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Abstract 
The Bureau of Meteorology routinely issues real-time forecasts for tropical sea 
surface temperature with up to 8 month lead time using the Predictive Ocean 
Atmosphere Model for Australia (POAMA). Regional climate forecasts from models 
such as POAMA are hindered by model bias and spatial scale that is too coarse for 
many applications. Therefore, we have reviewed and investigated the utility of simple 
statistical schemes for relating regional scale rainfall and temperature to forecasts of 
climate variables from POAMA.  
Statistical-dynamical forecasts capitalize on the components of the climate system for 
which POAMA provides skilful prediction and which have a strong association with 
Australian climate. Because statistical post-processing itself cannot generate skill, the 
dynamical model must have skill in predicting some aspects of the climate. A 3 
member ensemble hindcast from POAMA v. 1.5 was examined to determine the 
predictable components of climate variability that are related to south eastern 
Australian rainfall variability. The first few dominant modes of tropical Indo-Pacific 
SST variability, which explain up to 1/2 of Australian rainfall variability (depending 
on season), are predictable by POAMA at lead time up to 2 seasons. Furthermore, 
POAMA also demonstrates reasonable skill in directly predicting Australian rainfall 
at short lead times. Together, these findings suggest the possibility to improve 
regional forecast skill for Australian rainfall through statistical-dynamical prediction 
by using POAMA’s SST forecast (bridging) or POAMA rainfall forecast 
(calibration). Preliminary analysis of the POAMA hindcasts indicates skilful 
prediction for below/above median rainfall for south eastern Australia at lead times 
out to 2 seasons, and further skill improvement is obtained from statistical-dynamical 
calibration and bridging. However, skilful prediction by dynamical and statistical-
dynamical models varies for different regions in different seasons. 

 
Significant research highlights, breakthroughs and snapshots 

• POAMA demonstrates skill in predicting tropical Indo-Pacific SST (lead times 
to 6-9 months) and Australian rainfall (lead time to ~3 months) with 3 member 
ensemble hindcasts in 1980-2005.  

• Statistical bridging/calibration schemes were developed and found to be able 
to extend POAMA’s forecast skill for south eastern Australian rainfall.  

• 10 member ensemble hindcasts from 1980 to 2006 have been generated in 
order to reduce noise and improve reliability. 

• Current Australian rainfall and temperature real-time forecasts are available at 
POAMA official website : http://poama.bom.gov.au/ 

 
Statement of results, their interpretation, and practical significance against each 
objective 

• Project objectives: Review and identify possible statistical methods to 
improve direct prediction of rainfall and temperature from the Bureau’s 
dynamical seasonal forecast model (POAMA) 

1) Review of statistical-dynamical techniques 
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The basic approach of all statistical post-processing techniques is to develop 
relationships between forecasts and verification in a training period, and then to apply 
the statistical relationship to extend model forecasts for independent periods. In 
general, there are two ways to design statistical-dynamical prediction schemes: One is 
to relate forecasts of large-scale features from a dynamical model to regional scale 
climate variable (statistical bridging - e.g. use tropical SST predicted from POAMA to 
predict south eastern Australian rainfall based on their observed relationship). The 
other is to adjust patterns of regional forecasts from the dynamical model against 
observations in order to remove systematic bias (statistical calibration – e.g. POAMA 
rainfall forecasts across Australia to observed Australian rainfall). In these methods, 
predictors (e.g. POAMA SST or POAMA rainfall) must be fields for which the model 
has predictability, and predictands (e.g. observed rainfall) must have a robust 
statistical relationship with the predictors.  
Common approaches to identifying a statistical relationship of the predictors and 
predictands include singular value decomposition analysis (SVDA), canonical 
correlation analysis, or principal component analysis. These techniques expand 
predictors and predictands in terms of dominant patterns of variability and the time 
series of those patterns (Bretherton et al. 1992, Ward and Navarra 1997, Feddersen et 
al. 1999). In this project SVDA was adopted as it provides a direct measure of 
association between a predictor and a predictand, and its computation is 
straightforward.  
Once the major analysis tool is chosen, the rest of the processes to form a statistical-
dynamical prediction scheme are as follows: First the times series of the dominant 
spatial patterns of the predictor are regressed on the time series of the predictand by a 
multiple linear regression scheme in a training period. This regression relationship is 
used to make forecasts of a predictand in an independent period. For more details of 
the analysis tools and computing processes, refer to Hendon et al. (2007).  
2) Identification of predictable climate components by POAMA 
According to Wang and Hendon (2007), about 50% of eastern Australian spring 
rainfall was explained by the leading three spatial patterns (Empirical Orthogonal 
Function, EOFs) of tropical Indo-Pacific SST in 1982-2002. Wang and Hendon 
(2007) emphasized that Australian rainfall is not only sensitive to the leading pattern 
(EOF1) that represents mature ENSO condition, but also to the second and third EOFs 
which represent east-west shifts of equatorial east Pacific SST that occur in individual 
El Niño events. Our investigation with an extended observed data record (1980-2006) 
demonstrated that the temporal variations of the first 4 EOFs of SST can explain up to 
50% of the rainfall variability in the south eastern part of the country (SEACI region, 
38.5°-33.5°S, 137.5°-152.5°E; Fig. 1). 
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Figure 1: Correlation of observed south eastern Australian rainfall and the time series 

of the first four leading EOF modes of tropical Indo-Pacific SST variability 
(histograms). The spatial patterns of the four leading EOF modes of tropical SST are 

displayed with maps. 
 
Given the observed relationship between the tropical Indo-Pacific SST and Australian 
rainfall, it is important to address whether POAMA can predict the temporal 
variations of the leading patterns of tropical SST variability. Our study reveals that the 
first few EOF time series of SST predicted from POAMA are highly correlated with 
their observed counterparts with lead times of up to a season (refer to Table A-1 in 
Appendix for correlation coefficients). POAMA’s predictions of the first two 
dominant modes of SST readily beat persistence in all seasons except for autumn at 3 
month lead time. Therefore, POAMA has good skill in predicting not only the 
occurrence of El Niño/La Niña, but also some of the important variability of SST 
between ENSO events with lead time of a few months.  
On the other hand, POAMA shows moderate skill in direct prediction of Australian 
rainfall. The correlation between POAMA’s prediction at lead time 0 (lead 0 means, 
for instance, a forecast for JJA that is initialized on the 1st of June; Lim et al, 2007) 
and observation for Australian mean rainfall is 0.22, 0.56, 0.39 and 0.48, for summer, 
autumn, winter, and spring, respectively.  
The fact that POAMA is able to predict tropical Indo-Pacific SST variability with 
good skill and Australian rainfall with moderate skill provides a good base for 
statistical-dynamical prediction because statistical post-processing itself cannot 
generate skill: the dynamical model must have skill in predicting some aspects of the 
climate.  
3) Skill assessment of dynamical and statistical-dynamical forecast models 
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For statistical-dynamical prediction, we regressed the first five SVD mode time series 
of predicted SST from POAMA onto observed Australian rainfall for statistical 
bridging. For calibration, we regressed the first five SVD mode time series of 
predicted rainfall from POAMA onto observed rainfall. The resultant regression 
relationships were then used in forecast mode by plugging in the respective forecasts 
of SST or rainfall from POAMA. Because of the short period of hindcasts, we cross-
validated the entire processes (leave out a year, develop the relationships, make a 
forecast for the left out year, and repeat using all years), including recalculation of the 
SVD modes each iteration.  
We measured rainfall prediction skills of dynamical and statistical-dynamical models 
by hit rates of predicting below/above median rainfall over south eastern Australia 
(i.e. the percentage of correct forecasts for below/above median rainfall during 26 
years in each season). Direct prediction from POAMA shows high skill in autumn and 
spring rainfall prediction over south eastern Australia but no skill in summer and 
winter. By contrast, statistical-dynamical schemes results in skilful predictions of 
south eastern Australia rainfall in summer and winter (Fig. 2). Statistical calibration 
increases hit rates of prediction of below/above median rainfall in all seasons except 
for spring, whereas statistical bridging works better in winter than the other two 
models. As a result, statistical post-processing results in local improvement of skill for 
the SEACI region. However, it might be achieved at the expense of skill in other areas 
(see Figure A-1 in Appendix for detailed geographical features of prediction skill).  
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Figure 2: Hit rates (%) of predicting below/above median rainfall averaged over south 
eastern Australia (SEACI region, 38.5°-33.5°S, 137.5°-152.5°E).  

 
Summary of methods and modifications (with reasons) 

• Review literature and practises at other national centres  

• Identify the predictable components of the climate system, such as sea surface 
temperatures (SSTs) in the Nino3 region (150º W to 90º W, 5º S to 5º N), with 
POAMA hindcasts that can be exploited to improve the prediction of climate 
variability in south-eastern Australia 

• Investigate some simple statistical schemes that exploit the most predictable 
components of climate in POAMA (e.g., Nino3 SST) 

 
Summary of links to other projects 
This project has exploited findings from project 3.1.3 concerning the drivers of 
climate variability in SE Australia. The results here will feed into 3.1.4 and 3.2.2, 
where a more comprehensive analysis of climate predictions for SE Australia will be 
developed and evaluated.  
Publications/reports arising from this project 
Lim, E.-P. and H. H. Hendon 2007: Dynamical seasonal prediction of tropical Indo-
Pacific SST and Australian cool season rainfall (in preparation) 
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Lim, E.-P. and H. H. Hendon 2007: Seasonal forecasts of Australian rainfall with 
statistical-dynamical methods (in preparation)  
Hendon, H.H., E. Lim, O. Alves, and G. Wang, 2007: Review of techniques to 
bridge/calibrate dynamical seasonal predictions with focus on south eastern 
Australia. SEACI Technical Report, Milestone 3.2.2. 
Lim, E., H.H. Hendon and O. Alves 2007: Seasonal forecast of the tropical Indo-
Pacific SST and Australian rainfall. SEACI Technical Report, Milestone 3.2.2.  
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Project Milestone Reporting Table 

 

To be completed prior to commencing the project Completed at each Milestone date 
Milestone 
description1 

 

Performance 
indicators2 

 

Completion 
date3 
 

Budget4 for 
Milestone ($) 

Progress5 
 

Recommended 
changes to 
workplan6 

1. Review 
literature on 
statistical/dynamic
al prediction and 
investigate 
practises at other 
national centres 

Report 
prepared 

December 
2006 

25K A technical report 
on literature review 
has been completed 

None 

2. Identify 
predictable modes 
of climate 
variability that can 
be used to bridge 
to rainfall and 
temperature in SE 
Australia in 
POAMA 
hindcasts 

Report 
prepared (as 
part of 
Technical 
report for 
milestone 3) 

March 2007 25K Sensitivity of 
rainfall to inter-El 
Niño SST 
variations has been 
diagnosed (paper 
prepared). 
 
POAMA’s ability 
to forecast inter-El 
Niño SST 
variations and SE 
Australian climate 
has been assessed. 

None 

3. Investigate 
some simple 
statistical schemes 
that exploit the 
most predictable 
components of 
climate with 
POAMA 

BMRC 
Technical 
Report 
prepared 

June 2007  11K Trial combinations 
of predictors and 
predictands have 
been tested for 
statistical post-
processing. 

None 
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Appendix A 
 

   

(a) DJF 

   

(b) MAM 

  

(c) JJA 

   

(d) SON 

Figure A-1: Hit rates (%) of below/above median rainfall prediction directly from POAMA 
(left panels), from a statistical calibration scheme (middle panels), and from a statistical 

bridging scheme (right panels) at lead time 0 month. The contour interval is 10%, and the hit 
rates greater than 60% are coloured. 
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Table A-1: Correlation of observed SST EOF time series with the corresponding POAMA 
SST EOF time series (their spatial domain is the same as shown in Figure 1). Bold numbers 
are the correlation coefficients statistically significant at the 95% confidence level. (i.e.- 
coefficients greater than 0.38 are regarded as being statistically significant, given 26 years of 
sample size). 
 

(a) At lead time 0 
 

correlation EOF1 EOF2 EOF3 EOF4 

POAMA 0.95 0.88 0.78 0.70  
DJF 

Persistence 0.98 0.91 0.84 0.76 

POAMA 0.91 0.92 0.81 0.69  
MAM 

Persistence 0.90 0.90 0.88 0.42 

POAMA 0.90 0.83 0.74 0.65  
JJA 

Persistence 0.83 0.88 0.89 0.35 

POAMA 0.96 0.87 0.54 0.21  
SON 

Persistence 0.88 0.82 0.84 0.37 

 
(b) At lead time 3 months 

 

correlation EOF1 EOF2 EOF3 EOF4 

POAMA 0.88 0.66 0.67 0.50  
DJF 

Persistence 0.78 0.58 0.62 0.16 

POAMA 0.75 0.73 0.55 0.18  
MAM 

Persistence 0.80 0.86 0.64 0.29 

POAMA 0.67 0.80 0.54 0.54  
JJA 

Persistence 0.44 0.69 0.59 0.02 

POAMA 0.73 0.76 0.44 0.19  
SON 

Persistence 0.40 0.58 0.75 0.06 
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